PBN Airspace Concept Manual

Notice to Users

This document is an unedited advance version of an ICAO publication as approved, in principle, by the Secretary General, which is rendered available to the public for convenience. The final edited version may still undergo alterations in the process of editing. Consequently, ICAO accepts no responsibility or liability of any kind should the final text of this publication be at variance from that appearing here.

Advance edition (unedited)
FOREWORD

The purpose of this Manual is to provide step-by-step guidance on how to develop an Airspace Concept in the context of Performance Based Navigation (PBN). It is intended for all participants in the implementation of PBN applications.

Airspace planners and designers need to understand the interdependence of the airspace concept with the navigation system capability and to view both as a single entity. The benefits derived from the implementation of a PBN airspace concept must warrant the cost of aircraft and ATC system equipage, pilot and ATC training, as well as airspace and procedure design arising from the implementation. This is achieved through careful planning which takes account of the detailed navigation functional requirements called up by the airspace concept and the timing of the implementation since costs are driven by the number of airframes that have to be retrofitted with updated navigation systems to meet the new requirements.

This manual is intended to supplement the existing guidance material on airspace design and planning found in:

- Aircraft Operations, PANS-OPS, Doc 8168
- ATS Planning Manual, Doc 9426
- Performance Based Navigation Manual, Doc 9613

Future developments

Comments on this manual would be appreciated from all parties involved in the development and implementation of airspace concepts for PBN implementation. These comments should be addressed to:

The Secretary General
International Civil Aviation Organization
999 University Street
Montréal, Quebec, Canada H3C 5H7
TABLE OF CONTENTS

1.1 PERFORMANCE BASED NAVIGATION .. 6

1.2 The Airspace Concept .. 7

1.3 Benefits ... 8

2.1 INTRODUCTION ... 9

2.2 PREPARATORY PHASE ... 10
 2.2.1 Activity 1: Agree on Operational Requirement 10
 2.2.2 Activity 2: Create the Airspace Design Team 10
 2.2.3 Activity 3: AGREE objectives, scope and timescales 11
 2.2.4 Activity 4: Analyse the Reference Scenario 13
 2.2.5 Activity 5: Select Performance Criteria, Safety Policy and Safety Criteria 14
 2.2.6 Activity 6: Agree on ATM/CNS Assumptions 14

2.3 DESIGN PHASE ... 17
 2.3.1 OVERVIEW ... 17
 2.3.2 ACTIVITY 7: AIRSPACE DESIGN 19
 2.3.3 Activity 8: PRELIMINARY PROCEDURE DESIGN 22
 2.3.4 ACTIVITY 9: Airspace Structures and Sectorisation 23
 2.3.5 Activity 10: Selecting an ICAO Navigation Specification ... 24

3.1 INTRODUCTION ... 25

3.2 Activity 11: Airspace concept Validation 25
 3.2.1 Overview .. 25
 3.2.2 Fast-Time Simulation ... 28
 3.2.3 Real-Time Simulation (RTS) .. 29
 3.2.4 Live ATC Trials ... 31
 3.2.5 Flight Simulation ... 31
 3.2.6 Noise Modelling ... 32

3.3 ACTIVITY 11: FINALISATION OF PROCEDURE DESIGN .. 33

3.4 ACTIVITY 12: VALIDATION OF PROCEDURE DESIGN 33

4.1 Go / no go decision ... 35

4.2 ACTIVITY 14: Planning for Implementation 36

4.3 ACTIVITY 15: FINAL IMPLEMENTATION 37

4.4 ACTIVITY 16: FINAL IMPLEMENTATION 37
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>Aeronautical Information and Mapping</td>
</tr>
<tr>
<td>AIRAC</td>
<td>Aeronautical Information Regulation and Control</td>
</tr>
<tr>
<td>ANSP</td>
<td>Air Navigation Service Provider</td>
</tr>
<tr>
<td>ATM</td>
<td>Air Traffic Management</td>
</tr>
<tr>
<td>ATS</td>
<td>Air Traffic Services</td>
</tr>
<tr>
<td>CDO</td>
<td>Continuous Descent operations</td>
</tr>
<tr>
<td>CNS</td>
<td>Communications, Navigation, Surveillance</td>
</tr>
<tr>
<td>COM</td>
<td>Communications</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>FDP</td>
<td>Flight Data Processor</td>
</tr>
<tr>
<td>FTS</td>
<td>Fast Time Simulation</td>
</tr>
<tr>
<td>GAT</td>
<td>General Air Traffic</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>IAP</td>
<td>Instrument Approach Procedure</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>INS</td>
<td>Inertial Navigation System</td>
</tr>
<tr>
<td>IRU</td>
<td>Inertial Reference System</td>
</tr>
<tr>
<td>LVP</td>
<td>Localizer Performance with Vertical Guidance</td>
</tr>
<tr>
<td>PBN</td>
<td>Performance Based Navigation</td>
</tr>
<tr>
<td>RDP</td>
<td>Radar Data processor</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area Navigation</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
<tr>
<td>RTS</td>
<td>Real Time Simulation</td>
</tr>
<tr>
<td>SARPS</td>
<td>Standards and Recommended Practices</td>
</tr>
<tr>
<td>SID</td>
<td>Standard Instrument Departure</td>
</tr>
<tr>
<td>STAR</td>
<td>Standard Instrument Arrival</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SUR</td>
<td>Surveillance</td>
</tr>
<tr>
<td>TMA</td>
<td>Terminal Control Area</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omni-directional Radio Range</td>
</tr>
</tbody>
</table>
EXPLANATION OF TERMS

Airspace concept. An airspace concept provides the outline and intended framework of operations within an airspace. Airspace concepts are developed to satisfy explicit strategic objectives such as improved safety, increased air traffic capacity and mitigation of environmental impact etc. Airspace Concepts can include details of the practical organization of the airspace and its users based on particular CNS/ATM assumptions, e.g. ATS route structure, separation minima, route spacing and obstacle clearance.

Area navigation (RNAV). A method of navigation which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these.

Note.— Area navigation includes performance-based navigation as well as other RNAV operations that do not meet the definition of performance-based navigation.

Navigation aid (navaid) infrastructure. Navaid infrastructure refers to space-based and or ground-based navigation aids available to meet the requirements in the navigation specification.

Navigation application. The application of a navigation specification and the supporting navaid infrastructure, to routes, procedures, and/or defined airspace volume, in accordance with the intended airspace concept.

Note.— The navigation application is one element, along with communication, surveillance and ATM procedures which meet the strategic objectives in a defined airspace concept.

Navigation function. The detailed capability of the navigation system (such as the execution of leg transitions, parallel offset capabilities, holding patterns, navigation databases) required to meet the airspace concept.

Note.— Navigational functional requirements are one of the drivers for the selection of a particular navigation specification.

Navigation specification. A set of aircraft and aircrew requirements needed to support performance-based navigation operations within a defined airspace. There are two kinds of navigation specification:

- **RNAV specification.** A navigation specification based on area navigation that does not include the requirement for performance monitoring and alerting, designated by the prefix RNAV, e.g. RNAV 5, RNAV 1.

- **RNP specification.** A navigation specification based on area navigation that includes the requirement for performance monitoring and alerting, designated by the prefix RNP, e.g. RNP 4, RNP APCH.

Performance-based navigation. Area navigation based on performance requirements for aircraft operating along an ATS route, on an instrument approach procedure or in a designated airspace.

Note.— Performance requirements are expressed in navigation specifications in terms of accuracy, integrity, continuity, availability and functionality needed for the proposed operation in the context of a particular airspace concept.

RNAV operations. Aircraft operations using area navigation for RNAV applications. RNAV operations include the use of area navigation for operations which are not developed in accordance with this manual.
RNAV system. A navigation system which permits aircraft operation on any desired flight path within the coverage of station-referenced navigation aids or within the limits of the capability of self-contained aids, or a combination of these. An RNAV system may be included as part of a flight management system (FMS).

RNP operations. Aircraft operations using an RNP system for RNP navigation applications.

RNP system. An area navigation system which supports on-board performance monitoring and alerting.

Standard instrument arrival (STAR). A designated instrument flight rule (IFR) arrival route linking a significant point, normally on an ATS route, with a point from which a published instrument approach procedure can be commenced.

Standard instrument departure (SID). A designated instrument flight rule (IFR) departure route linking the aerodrome or a specified runway of the aerodrome with a specified significant point, normally on a designated ATS route, at which the en-route phase of a flight commences.
CHAPTER 1

1.1 PERFORMANCE BASED NAVIGATION

1.1.1 The ICAO Performance-based Navigation (PBN) Concept was introduced in 2008 and is detailed in the Performance Based Navigation Manual (Doc 9613). The PBN concept replaced the Required Navigation Performance (RNP) concept.

1.1.2 PBN introduces airworthiness certification and operational approval requirements for use of an area navigation (RNAV) system in airspace implementations. PBN is one of a number of enablers of Airspace Concepts, as shown in Figure 1 below.

![Airspace Concept and PBN](image)

Figure 1 - Airspace Concept and PBN

1.1.3 In the PBN concept, the Navigation Application identifies the navigation requirements resulting from the Airspace Concept such as ATS routes and Instrument Flight Procedures. The Navigation Application is itself enabled by two sub components: the NAVAID Infrastructure and the Navigation Specification. The NAVAID Infrastructure details the ground- and space-based navigation aids used to support the navigation application; the Navigation Specification is a technical and operational specification that details the required accuracy, integrity, continuity and functionality of the on-board area navigation equipment as well as the associated training and operating requirements. The Navigation Specification provides material that can be used by States to develop national certification and operational approval material.
1.2 THE AIRSPACE CONCEPT

1.2.1 The Airspace Concept describes the intended operations within an airspace. It impacts many of the components of the ATM Operational Concept, including airspace organisation and management, demand and capacity balancing, traffic synchronisation, airspace user operations and conflict management. Airspace concepts are developed to satisfy explicit and implicit strategic objectives such as:

- improved or maintained safety,
- increased air traffic capacity,
- improved efficiency,
- more accurate flight paths and
- mitigation of environmental impact.

Airspace Concepts can include details of the practical organization of the airspace and its users, based on particular CNS/ATM assumptions, for example, ATS route structure, separation minima, route spacing and obstacle clearance. Good airspace design is critical to the effective implementation of an airspace concept. This is illustrated in Figure 2.

1.2.2 Once fully developed, an airspace concept describes in detail the target airspace organization and the operations within that airspace. It addresses all of the strategic objectives, and identifies all the CNS-ATM enablers, as well as any operational and technical assumptions. An airspace concept is a master plan of the intended airspace design and its operation.

Figure 2 – Airspace Concept Constituents
1.3 BENEFITS

1.3.1 PBN offers many advantages over the historic, conventional navigation methods where instrument flight procedures and air routes were based upon specific ground-based navaids and their associated obstacle clearance criteria. Inter alia, PBN:

- reduces the need to maintain sensor-specific routes and procedures, and their associated costs.
- avoids the need for cost-prohibitive development of sensor-specific operations with each new evolution of navigation systems.
- allows for more efficient use of airspace (route placement, fuel efficiency, noise abatement, etc.);
- clarifies the way in which RNAV systems are used;
- facilitates the operational approval process for operators by providing a limited set of navigation specifications intended to form the basis of certification and operational approval material which could be applied globally in conjunction with the appropriate navigation infrastructure.
- ensures that approval for operation in one state or region will be applicable in another state or region for those navigation applications calling up the same navigation specification.

1.3.2 The development and implementation of an Airspace Concept using PBN makes significant contributions in terms of safety, environment, capacity and flight efficiency. For example:

- the PBN partnership approach to developing the Airspace Concept ensures that conflicting requirements are processed in an integrated manner and diverse interests are addressed without compromising safety, environmental mitigation, flight efficiency or capacity requirements;
- safety is enhanced by ensuring that the placement of ATS routes and Instrument Flight Procedures fully meet both ATM and obstacle clearance requirements;
- environmental mitigation is improved when environmental needs are given the same level of importance as capacity enhancement when defining the operations in an airspace.
- airspace capacity and flight efficiency are enhanced by optimising the lateral and vertical placement of both ATS routes and Instrument Flight Procedures.
2.1.1 The development and implementation of an Airspace Concept can be broken down into sixteen separate activities as shown in Figure 3. This section of the handbook provides step-by-step guidance on developing an airspace concept, covering the first ten of these activities.

![Airspace Concept Development and Implementation Process](image)

Figure 3 Airspace Concept Development and Implementation Process

2.1.2 The first activity is usually initiated by an event which triggers an operational requirement. Such events are often categorised by one or more strategic objectives such as Safety, Capacity, Flight Efficiency, Environmental Mitigation or Access. While some of these strategic objectives may be explicit in the proposed airspace change, the remainder will remain implicit objectives insofar as they should not normally be adversely affected by the proposed change. There are often conflicts between these objectives and they must be prioritised, ensuring at all times that the maintenance of safety remains paramount.

2.1.3 The ten activities within Airspace Concept Development are divided into two Phases: a significant ‘Preparatory’ phase followed by the ‘Design’ phase.

2.1.4 There are two pre-requisites to successful Airspace Concept Development:

- Comprehensive preparation – planning must take account of all aspects and must address all related stakeholder concerns – and
- Iteration – airspace development is not a linear process – it can only result in a sound product through a series of reviews, validations and subsequent refinements.

Development of the airspace concept is not a linear process but relies on several iterations and refinement.
2.2 PREPARATORY PHASE

2.2.1 ACTIVITY 1: AGREE ON OPERATIONAL REQUIREMENT

Airspace changes are triggered by operational requirements. Examples of operational requirements include:

- the addition of a new runway in a terminal area (e.g. to increase capacity at an airport);
- pressure to reduce aircraft noise over a particular area (e.g. to reduce environmental impact over a residential area) or
- the need to support an expected increase in air traffic.

2.2.2 ACTIVITY 2: CREATE THE AIRSPACE DESIGN TEAM

2.2.2.1 In order to respond to the operational requirement identified in Activity 1, an Airspace Concept must be developed, validated and implemented. The Airspace Concept must address all of the requirements and cannot be developed by a single individual working in isolation. Airspace Concepts, from inception to implementation, are the product of an integrated team working together: the Airspace Design Team.

2.2.2.2 Usually the Airspace Design Team is lead by an ATM specialist with an in depth operational knowledge of the specific airspace under review. This ATM Specialist is supported by:

- air traffic controllers who are also familiar with the airspace;
- ATM and CNS system specialists who are familiar with the existing, and planned, CNS-ATM systems;
- technical pilots from operators who use the airspace;
- airspace designers and instrument flight procedure designers;
- other airspace users (such as military, GAT etc)
- airport and environmental managers.

This is illustrated in Figure 4.
2.2.3 ACTIVITY 3: AGREE OBJECTIVES, SCOPE AND TIMESCALES

2.2.3.1 One of the first tasks of the airspace design team is to agree the objectives of the project. Project objectives should be derived from the strategic objectives which have triggered the project. For example, if the project is triggered by an environmental strategic objective, the (airspace) project objectives might be linked to noise reduction (e.g. reduce the noise footprint over a nearby town).

2.2.3.2 Controlling the project scope can be much more difficult. Scope creep is a risk in all projects and it often leads to the failure of projects. It is very important to decide what needs to be done to achieve the project objectives, and to agree, and stick to, a specific body of work to reach those objectives. The project scope is very much a function of the time and resources available to complete the project. Two possibilities exist: either the team determines the implementation date based on all the work that needs to be completed or the implementation date is fixed beforehand and the team reduces the scope to match the time available. Resources, Time and Scope are the three sides of the project planning ‘triangle’, Figure 5.

2.2.3.3 It is also important to ensure that the size of the major change to airspace structures, routes and procedures that the project generates is manageable on a regional basis. Step by step introduction of PBN airspace and routes over a number of years is more likely to meet with success than any ‘big bang’ approach. On the other hand, changes to the en-route structure often require changes to adjacent terminal structure in the same AIRAC cycle if connectivity is to be maintained.
2.2.3.3 A sample project task list with time estimations is provided in Figure 6.

<table>
<thead>
<tr>
<th>AIRSPACE CONCEPT HANDBOOK ACTIVITIES 1 TO 15: PROJECT PLANNING SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12+13</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>7-9</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>1-3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2.2.4 ACTIVITY 4: ANALYSE THE REFERENCE SCENARIO

2.2.4.1 Before starting the design of the new airspace concept, it is important to have an appreciation of the current operation. This is the role of the Reference Scenario.

2.2.4.2 The Reference Scenario is a description of the current operation in the airspace where PBN is to be introduced. It includes all the ATS Routes, SIDs/STARs, airspace volumes (e.g. TMA), ATC sectorisation, air traffic data together with inter-centre and inter-unit coordination agreements. This is shown in Figure 7.

![Reference Scenario Diagram](image)

Figure 7 Reference Scenario

2.2.4.3 The description and analysis of the Reference Scenario is a critical step in the design process. By analysing the Reference Scenario in terms of the project’s performance indicators, it is possible to gauge how the airspace is currently performing. It is also possible to determine with some certainty what works very well in an airspace, and hence should be kept, and what does not work well or could be improved. Finally, and most importantly, by fixing the performance of the Reference Scenario, a benchmark is created against which the new airspace concept can be compared, see Figure 8. By using this benchmark it becomes possible to establish whether the proposed airspace concept performs better or worse than the Reference Scenario and whether the Safety and Performance criteria have been achieved.

![Scenario Comparison Diagram](image)

Figure 8 Scenario Comparison
2.2.5 ACTIVITY 5: SELECT PERFORMANCE CRITERIA, SAFETY POLICY AND SAFETY CRITERIA

2.2.5.1 The in-depth analysis of the Reference Scenario in Activity 4 provides direct input to the new airspace concept. The project objectives and scope may have been decided in Activity 3, but it is still necessary to determine how to measure the project’s success. For example, the project may be considered to be a success when its strategic objectives are satisfied – if the strategic objectives are to double the throughput on runway X, and this is demonstrated in a real-time simulation of the (new) airspace concept, then the project has satisfied this performance criterion.

2.2.5.2 Any airspace concept must meet the safety criteria laid down in the Safety Policy which has to be known at the outset of the project. Safety criteria may be qualitative or quantitative and often a mix of both is used. The Safety Policy is normally promulgated at a national or regional level and, hence is external to the project. If it is necessary to establish a Safety Policy at the project level, it is vital that it is approved at the highest possible national level early in the project lifetime. Safety Policy concerns itself with questions like:

- Which Safety Management System should be used?
- Which Safety Assessment Methodology should be used?
- What evidence is needed to show that the airspace concept is safe?

2.2.6 ACTIVITY 6: AGREE ON ATM/CNS ASSUMPTIONS

2.2.6.1 The airspace concept to be developed is based upon certain ATM/CNS assumptions. These assumptions must take account of environment that is expected to exist at the time when the new airspace operation is intended to be implemented (e.g. in 20XX). ATM/CNS assumptions include, for example:

- The capability of the aircraft expected to fly in the airspace;
- The main runway in use within a particular TMA;
- The percentage of operations that will take place during LVP;
- The main traffic flows (in 20XX, the traffic flows may be different to current flows);
- The ATS Surveillance and Communication systems that will be available in 20XX;
- ATC System-specific assumptions such as the maximum number of sectors that will be available for use.

This is highlighted in Figure 9.
2.2.6.2 The traffic assumptions will depend upon the anticipated fleet capabilities and there should be a sound understanding of the likely traffic mix and distribution. This includes the mix of aircraft types (e.g. heavy and medium jets/twin turboprops/helicopters/single-engined trainers); the mix of aircraft performance (minimum speeds, climb gradients etc.) and the mix of operational roles (passenger, freight, training etc). In particular, the anticipated navigation capability of the fleet must be analysed:

- How many of the aircraft have an RNAV system.
- What primary positioning systems are used (GNSS, VOR, DME/DME) by the RNAV systems.
- Is an on-board augmentation (INS/IRU) fitted.
- Against what standards have the RNAV systems been certified.
- What operations are the aircraft and carriers approved for.
- What percentage of the fleet is not capable of the proposed PBN application.

2.2.6.3 It is important to establish the existing RNAV equipment approval, the actual capabilities of the systems being carried and the system upgrades that are expected to be implemented prior to the introduction of the new Airspace Concept. It is costly for an operator to get approval of a specific RNAV capability and to maintain pilot currency in the operation of that capability. As a
result operators, and especially regional operators, will seek the minimum approval necessary to meet the existing navigation requirements for the airspace. If the new Airspace Concept calls up a functionality that is present in the RNAV system software but is not covered in the existing certification it will cost operators to gain approval and undertake the pilot training for this new functionality. However, this cost (and resulting implementation timescales) will be significantly less than if the aircraft requires retrofitting with new equipment or software. It is important to have a thorough knowledge of the fleet capabilities and a realistic understanding of the likely improvements in capability prior to implementation date. Over-enthusiastic projections of fleet capability inevitably lead to major project delays and cancellations.

2.2.6.4 The choice of traffic sample for the new airspace concept, Figure 10, is as important as the knowledge of the fleet itself. This is because the routes (ATS Routes, SIDs/STARs or Instrument Approach Procedures) should be placed in such a way to ensure maximum flight efficiency, maximum capacity and minimum environmental impact. Moreover SIDs and STARs/Approaches provide the link between the major en route ATS routes and the threshold of the active runways (hence the importance of knowing the primary and secondary runway in use). A traffic sample for a new airspace concept is usually a future traffic sample i.e. one where certain assumptions have been made about the fleet mix, the timing of flights, and the evolution of demand with respect to both volume and traffic pattern. The success of an airspace concept can stand or fall on its traffic assumptions. Various models may be used to determine air traffic forecasts and, although the existing ATC knowledge of the air traffic movements can help considerably, the proposed traffic sample for 20XX must be thoroughly analysed taking into account projections from all affected stakeholders. Invariably, certain characteristics will be identified in the traffic sample e.g. seasonal, weekly or daily variations in demand; changes to peak hours and relationship between arrival and departure flows which must all be taken into account in the airspace concept, Figure 11.
2.3 DESIGN PHASE

2.3.1 OVERVIEW

2.3.1.1 Once the ATM/CNS assumptions have been agreed, the airspace design commences. For both en-route and terminal airspace, airspace design is an iterative process which places significant reliance on the qualitative assessment and operational judgement of the controllers, airspace designers and procedure designers on the team.

2.3.1.2 It is critical to ensure coherence between en route and terminal airspace – en-route designs must be fully integrated with the terminal designs.

2.3.1.3 The procedure designer must participate in the initial conceptual design led by the operational controllers, acting as a facilitator during this process and providing guidance on the proposed route placement from both an obstacle/airspace clearance and an aircraft performance perspective.

2.3.1.4 Firstly, the SIDs/STARs and ATS Routes are designed. This is an iterative, analytical process which starts at a conceptual level and develops into a detailed and rigorous design activity. It can be carried out using paper and pencil, particularly during the conceptual stage, and with software support, particularly during the detailed design stage. Route placement is usually determined by the traffic demand, the runways in use, the strategic objectives and the constraints.

Figure 11 Traffic Forecasts

Figure 12 Proposed Airspace Concept
imposed by obstacles and airspace reservations. It may also be dependent upon the coverage provided by ground-based nav aids, if such support is required. See Figure 12.

Notes

1. The required route spacing and the available CNS infrastructure will together determine whether RNAV or RNP is needed to support the proposed route design.

2. The role of the procedure designer in the terminal airspace route description and placement is of crucial importance. It is this specialist who advises the team whether the intended routes match the navigation assumptions and can be designed in accordance with PANS OPS criteria.

2.3.1.5 After the routes have been designed and appropriate obstacle clearance is assured, an overall airspace volume is defined to protect all the IFR flight paths (TMA).

![Figure 13 Airspace Concept with Structure](image)

Note: In regions where the entire airspace above a specified level is designated as controlled airspace, the definition of airspace volumes above such a level may be of minor application.

2.3.1.6 Finally, the airspace volume is sectorised for air traffic management purposes, Figure 13.

2.3.1.7 The different activities and the iterative nature of the task means that there must be very close co-operation between all the players involved in the process, Figure 14.
2.3.2 ACTIVITY 7: AIRSPACE DESIGN

2.3.2.1 PBN makes it possible to place routes in the most optimum locations provided that there is the necessary coverage provided by the ground- or space-based navigation aids. This means that routes can be placed to:

- optimize capacity by avoiding conflicts between traffic flows;
- improve operational efficiency with shorter route lengths;
- support continuous descent or climb operations with vertical windows and thereby enable more fuel efficient profiles with reduced environmental impact (noise CO2 etc);

Note: Continuous Descent Operations (CDO) are addressed in detail in the CDO Manual, Doc 9931 and Continuous Climb Operations (CCO) are covered by the CCO Manual, Doc 9xxx.

- avoid noise sensitive areas;
- avoid bi-directional traffic on the same route with parallel routes;
- provide different route options between two airports.

Most significantly PBN makes efficient connectivity between en route and terminal procedures possible thereby ensuring a seamless continuum of routes. All of these advantages do not negate best practices in route design developed over decades. Some of these considerations are provided below.

Note: In the following paragraphs, the term ‘ATS routes’ refers to those routes usually designated as per Annex 11 Appendix 1 (e.g. UL611), whilst ‘terminal routes’ refers to instrument approach procedures (IAPs) and SIDs/STARs designated in accordance with Annex 11 Appendix 3 (e.g. KODAP 2A) and Annex 4 Chapter 11.

2.3.2.2 ATS Route networks cover most of the world’s continents and reflect the main traffic flows across the landmasses. The ATS Route network should be planned at a continental, regional or area level as appropriate. This invariably results in a more efficient route network and avoids potential conflicts between traffic flows.
2.3.2.3 Route spacing, which plays a major role in determining the capacity of an airspace, is very dependent upon the CNS/ATM infrastructure supporting the operation. For example, where RNAV 5 is implemented, a route spacing of 10-15NM can only be achieved if adequate radar surveillance is available and the ATM infrastructure supports controller monitoring of track behaviour. Many route spacing criteria only address the distance between parallel straight segments and do not take account of the variable turn performance of different aircraft at different altitudes. Many aircraft limit the bank when above FL190 and this can lead to turns being initiated up to 20NM before a fly-by waypoint. In order to achieve track segregation during turns, it is necessary to either require the aircraft to all have the ability to follow fixed radius turns or to increase the route spacing significantly at the turn points.

2.3.2.4 Continental traffic flows service multiple airports, and, in order to avoid mixing overflying traffic with climbing and descending traffic, designers should aim to segregate the ATS routes (black) from the terminal routes to/from airports (red/blue), see Figure 15.

![Figure 15 Segregated Routes](image-link)

2.3.2.5 Whilst operators and environmental managers concentrate on the placement of each terminal route in terms of flight efficiency, environmental mitigation and obstacle clearance/flyability, ATC has to manage the traffic along all the routes as a package. The airspace design, from an ATC perspective, concentrates on the interaction between the arrival and the departure flows. These different objectives are not mutually exclusive. It is possible to design terminal routes and achieve most of the, apparently conflicting, objectives. Care must be taken in selecting the departure and arrival route crossing points to ensure that neither arriving nor departing aircraft are constrained. It is important to have a good understanding of the fleet performance. The graph in Figure 16 below shows the conflict zones for 3%, 5% and 10% climb gradients (blue) and arrival profiles with specific speed assumptions (red) at various distances from the runway.

For example: a departure on a 7% climb gradient (blue hashed line) 24 track miles from the runway will conflict with the arrival (red-hashed line) at 36 track miles from the threshold, when both aircraft would be in the region of 9000 ft above aerodrome elevation. A crossing point at this location would hamper both the departure and the arrival.
2.3.2.6 There are currently two ATM methodologies used in the design of busy terminal airspaces. The first involves a number holds which are used to keep the pressure on the terminal airspace by feeding a continuous stream of arriving traffic from the holding stacks to the arrival/approach system with departures threaded through the arriving traffic. The second model is more elastic in that, in order to avoid holding aircraft, longer terminal arrival routes are designed to the landing runway. In many instances the track miles flown by arriving aircraft may be similar regardless of the model used. However, for CDO, early linear extensions on extended PBN routing allow the pilot to better plan the descent profile and hence provide benefits over holding, especially at lower altitudes.

2.3.2.7 PBN STARs may be designed as ‘Open’ or ‘Closed’, see Figure 17. The terms ‘Open STAR’ and “Closed STAR’ are not yet formally included in ICAO definitions, but are in common use throughout the PBN world. Open STARs provide track guidance to a downwind track position from which the aircraft is tactically guided by ATC to intercept the final approach track. Closed STARs provide track guidance to the final approach track for an automatic transition to final approach. In the Closed STAR the RNAV system always has a defined distance to touch down to support the management of the vertical profile. A Closed STAR can also be designed and published in a manner that facilitates alternative routeing by ATC on a tactical basis through the provision of additional waypoints to provide path stretching or reduction. Any tactical change will impact the vertical profile if it is delivered after the aircraft has reached ‘Top of Descent’. An Open STAR requires tactical routeing instructions to align the aircraft with the final approach track. The RNAV system manages the descent to the final point on the STAR prior to the ATC intervention but cannot ensure a CD profile as the system has no knowledge of the likely track miles to be covered under tactical routeing. Where multiple arrival routes are operated onto a single runway, the Closed STAR can represent a challenge to ATC if it is necessary to intervene regularly to prevent the automatic turn onto final approach. The choice of Open STAR or Closed STAR must take account of the operating environment and the ATC procedures.
2.3.2.8 Point Merge is a concept which seeks to adopt the best points of the two ATM methodologies discussed in paragraph 2.3.2.6 to facilitate as much CDO as possible while maintaining a high rate of delivery to the final approach. It uses a Closed STAR design with a ‘lateral holding arc’ to allow ATC tactical routeing direct to a common merge point. This provides a means by which the RNAV system is always engaged to the merge point thereby easing the profile planning and execution. The disadvantage is that there may be up to 25 NM of level flight while the aircraft is on the lateral holding arc. It is illustrated in Figure 18.

2.3.3 ACTIVITY 8: PRELIMINARY PROCEDURE DESIGN

2.3.3.1 The preliminary procedure design runs in concert with the airspace design. It comprises four steps:

- first the airspace design is analysed to determine what navigation performance is needed to achieve the intended design;
- then the fleet capability is analysed to determine if it meets the required navigation performance;
- the NAVAID Infrastructure is analysed to establish if the NAVAID coverage is sufficient to support the intended design – if ground-based navigation aids are expected to be used,
the availability and coverage of these aids should be ascertained before a major design commitment is made.

- the proposed routes and holds are analysed to establish if they are feasible, taking account of the required navigation performance, the available navaid coverage, the appropriate route spacing criteria and the obstacle constraints.

2.3.3.2 If the fleet capability or the navigation infrastructure are found to be wanting, it may be necessary to identify trade-offs and that may even mean changing the airspace concept. If the routes are shown not to be feasible, the airspace design will have to be reconsidered.

2.3.3.3 The choice of navigation performance can be made early in the design process based upon the decisions made in Activity 6. As the design becomes more specific, the procedure designer in the airspace design team should clarify whether certain functionalities would be required and would be expected to be available.

2.3.4 ACTIVITY 9: AIRSPACE STRUCTURES AND SECTORISATION

2.3.4.1 The design of ATS routes, terminal routes, airspace structures and ATC sectorisation is an iterative process. The airspace structures and the ATC sectorisation are considered once the ATS and Terminal routes have been completed. The airspace structure is created to protect IFR flight paths, both vertically and laterally and it may be necessary to modify the routes to ensure that they fit within the airspace structure. Once the structure is complete, the airspace is sectorised for purposes of ATM and here again it may be necessary to revisit the route placement. Neither structures nor sectors need, of necessity, follow national borders. It is possible, and even desirable for reasons of flight efficiency and capacity, to design cross-border airspace structures or sectors. In such cases, the delegation of ATS will need to be considered.

2.3.4.2 Airspace sectorisation may be functional or geographic:

- In geographical sectorisation the airspace volume is divided into 3D blocks where a controller is responsible for all traffic within the block (sector)

- In functional sectorisation the airspace is structured by function of an aircraft’s phase of flight. For example, in terminal airspace, one controller may be responsible for arriving aircraft and another may be responsible for departing aircraft in the same 3D airspace block.

En-route airspace tends to be sectorised in a geographic manner while terminal airspace may use one or both types of sectorisation, see Figure 20.
2.3.5 ACTIVITY 10: SELECTING AN ICAO NAVIGATION SPECIFICATION

2.3.5.1 The final activity is the confirmation of the navigation specification from the PBN Manual that matches, in terms of navigation performance/functionality, the requirements of the airspace concept. This selection can be difficult to achieve as it is rarely cost-effective to require a significant proportion of the fleet to retrofit RNAV systems or sensors to achieve a specific functionality. A example of this can be seen in the ECAC area of Europe where the initial intent of implementing RNAV 1 had to be scaled down to RNAV 5 when it became clear, 3 years before implementation date, that the expected natural replacement of the older equipment with systems compatible with RNAV 1 was much slower than expected.

2.3.5.2 If a mandate is applied, then all aircraft flying in the airspace will be capable of flying the new routes/procedures. However, the benefit of a mandate must be shown to outweigh the cost of implementation.

2.3.5.3 One option may be to consider a mixed navigation environment involving one or more PBN navigation specifications and even some traffic using conventional navigation. Mixed navigation environments usually occur in one of three scenarios:

- A PBN application is implemented, but not mandated, and conventional navigation is retained.
- A ‘mixed-mandate’ is used within an airspace volume – usually en-route or oceanic/remote procedural operations where an RNAV application is required for operation along one set of routes, and an RNP application along another set of routes within the same airspace;
- A mix of RNAV or RNP applications is implemented in airspace, but there is no mandate for operators to be able to perform them. Here again, conventional navigation could be authorised for aircraft that are not approved to any of the navigation specifications.

2.3.5.4 Mixed navigation environments can have a very negative impact on ATC workload, particularly in dense en-route or terminal area operations. The acceptability of a mixed navigation environment is also dependent on the complexity of the ATS route or terminal route structure and upon the availability and functionality of ATC support tools. The increased ATC workload can result in the need to limit mixed-mode operations to a maximum of two types where there is one main level of capability. In some cases ATC may only be able to accept a mixed environment where a high percentage (70-90%) of the traffic are approved to the required navigation specification. For these reasons, it is crucial that operations in a mixed navigation environment be properly assessed in order to determine the viability of such operations.
CHAPTER 3

3.1 INTRODUCTION

3.1.1 Once the airspace design is complete, the airspace concept will have become a comprehensive body of work that needs to be validated and checked. Validation takes place in various phases:

- the airspace concept is usually validated during the design process and again when the airspace design is complete
- the new routes are validated once the design process is complete

3.1.2 This chapter addresses the validation of the airspace concept and the airspace design. The validation of instrument flight procedure design is addressed in Aircraft Operations, PANS-OPS, Vol II, Doc 8168 and The Quality Assurance Manual for Flight Procedure Design, Doc 9906.

3.2 ACTIVITY 11: AIRSPACE CONCEPT VALIDATION

3.2.1 OVERVIEW

3.2.1.1 The main objectives of the Airspace Concept validation are to:

- assess if the project objectives can be achieved by implementation of the airspace design and the airspace concept in general;
- prove the ATM validity of the airspace design;
- identify potential weak points in the concept and develop mitigation measures;
- provide evidence and proof that the design is safe i.e. to support the Safety Assessment.

3.2.1.2 Validation methods may produce quantitative or qualitative results. Both types of result are needed and the validations are undertaken at the same time as they each need information produced by the other method. It is essential that the results are viewed as a single entity even if they are derived from significantly different methods. In general terms, Quantitative Assessment refers to validation methods that are numerical and rely on the quantification of data. These methods usually rely on tools which are usually computer-based simulators. Qualitative Assessment is not reliant on data but more on objective analysis, reasoning, argument and justification. However, data from a quantitative assessment cannot be accepted without analysis either and thus the final result depends upon the effective use of the Qualitative Assessment tools. Table 1 provides a comparison of the different modelling methods.
Table 1 Model Comparison

3.2.1.3 There are several ways in which to undertake airspace concept validation:

- Airspace Modelling
- Fast Time Simulation (FTS)
- Real Time Simulation (RTS)
- Live ATC Trials
- Flight Simulation
- Data Analytical Tools
- Statistical Analysis
- Collision risk modelling
3.2.1.4 Each method differs in terms of cost, realism, complexity, time and the number of traffic samples and test cases used. The more complex the simulation method used, the greater the cost, the longer the preparation/run time required and the closer to reality the results become. However, normally for reasons related to cost/time, the number of traffic samples/test cases tend to decrease as the complexity of the simulation method used increases. This is illustrated in Figure 21.

![Figure 20 Complexity Trade Off Against Cost](image)

3.2.1.5 Most computer based validation tools assume an unrealistically high quality navigation performance on the part of the aircraft but this does not usually affect the main aim of the validation exercise which is to check the ATM workability and the safety of the proposed airspace concept. Where a specific investigation into the impact of navigation failure modes is desired, the simulation scenarios will require additional pre-programming. It should be noted that the route spacing criteria already take account of navigation failure modes and most airspace concepts will not require specific navigation failure simulations.

3.2.1.6 The number and extent of validation methods used and their duration is directly linked to the complexity of the airspace concept and the complexity of the traffic sample. The greater the number of change and the greater their safety and operational impact, the greater the requirement for accurate and detailed investigation to prove the operational benefits and the fulfilment of safety criteria.

3.2.1.7 The design team should allocate enough time in the project plan for the appropriate level of assessment (modelling, fast time and real time simulation, live trials). The planning should be made as flexible as possible because the results of one validation method could heavily impact upon the next validation step in the sequence or could lead to the suspension of the validation
process and a return to the design phase. The validation programme should be carefully mapped out during the project planning phase and access time to FTS and RTS should be booked well in advance. Many projects have been delayed because of the non-availability of simulators at the crucial time.

3.2.1.8 If issues are identified during the validation which require a return to the design phase of the project, this should not be resisted. For many reasons, not the least cost, it is better to return to the drawing board sooner rather than later.

3.2.2 AIRSPACE MODELLING

3.2.2.1 Airspace modelling is computer based and tends to be one of several validation methods used to validate an airspace design. It is used during the airspace design phrase because it enables the airspace design team to visualise, in three dimensions, the placement and profile of routes, the airspace structures and the sectorisation.

3.2.2.2 Airspace modelling tools can be used as simple, scaled-down Fast Time Simulators. Their main usage is to create a crude representation of the routes and airspace structures (sectors) together and their interaction with a selected traffic sample. The tool generates simplified 4D trajectories (position + time) according to the flight plans described in the Traffic Sample (with its rules) in a particular Airspace Organisation (with its rules). These trajectories are used together with the airspace blocks to calculate a series of statistical data such as: sector loading, route segment loading, conflicts, etc. More advanced airspace modelling tools can derive more refined data with regard to the workload and sector capacity. The advantages and disadvantages are listed in Table 2.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>flexible</td>
<td>crude representation of real environment</td>
</tr>
<tr>
<td>simple to assess various alternatives</td>
<td>only provides high level statistical data</td>
</tr>
<tr>
<td>easy scenario adaptation</td>
<td>cannot replicate tactical controller interventions</td>
</tr>
<tr>
<td>easy generation of test cases</td>
<td>basic aircraft performance</td>
</tr>
<tr>
<td>easy to create and assess “what if” tests</td>
<td>simplified trajectories</td>
</tr>
<tr>
<td>easy to test large number of traffic samples</td>
<td>no representation of meteorological conditions</td>
</tr>
<tr>
<td>can use data derived from real traffic and ATC environment</td>
<td>accuracy depends heavily on the assessor ability and experience</td>
</tr>
<tr>
<td></td>
<td>high degree of subjectivity</td>
</tr>
<tr>
<td></td>
<td>difficult to involve users</td>
</tr>
</tbody>
</table>

Table 2 Advantages and Disadvantages of Airspace Modelling

3.2.2 FAST-TIME SIMULATION

3.2.3.1 Fast-Time Simulation is often used to validate a proposed airspace concept and it may also be used to demonstrate that the safety objectives have been met.

3.2.3.2 The airspace design team may use FTS prior to RTS or as the only validation tool. FTS is less demanding in terms of human resources than RTS, and is often a preferred method for improving a proposed design, identifying flaws in a design concept, and/or preparing the path to RTS or direct implementation.
3.2.3.3 The airspace organisation and traffic sample needs to be coded up for the simulated environment using a language and syntax specific to the software. The input data includes routes, the traffic sample assigned to each routes, airspace structures and sectors and various rules for aircraft and ATM behaviour.

3.2.3.4 The RTS simulator engine generates 4D trajectories (position + time) for each aircraft based upon flight plan information and the rules. The system checks each trajectory for certain predefined events, such as conflicts, level changes, route changes, sector entry or exit. When such an event is detected, the system increments a counter and triggers task parameters linked to the event. For example, if the system detects that an aircraft has crossed a sector border, it will increase by one the number of aircraft counted in that specific sector and will trigger as active the tasks assigned to the controllers (such as hand-over, transfer of communication, identification, etc). In the simulator model, controller actions are described by task. These tasks are basic ATC actions, which are triggered by specific events and have a time value associated with it. This value is the time required in real life for the controller to fulfil the specific action. The simulator adds the values of the task parameter for a given test case and the result gives an indication of controller workload. Usually, a controller is considered not to be overloaded if this figure does not exceed 70% of the total time of the test case. The precision of workload measurement improves when the ATC modus operandi is more detailed and formalised. The advantages and disadvantages are listed in Table 3.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>one of the most frequently used methods for sector capacity assessments</td>
<td>simplified model of “real” operation</td>
</tr>
<tr>
<td>opportunity to collect quality data</td>
<td>only provides statistical data</td>
</tr>
<tr>
<td>relatively unlimited scope and great flexibility</td>
<td>cannot replicate tactical controller interventions</td>
</tr>
<tr>
<td>relatively simple to assess various alternatives</td>
<td>quality of results depends heavily on the accuracy of the model</td>
</tr>
<tr>
<td>relatively easy test case adaptation</td>
<td>limited aircraft performance and simplified aircraft behaviour</td>
</tr>
<tr>
<td>relatively easy to test large number of traffic samples</td>
<td>low representation of meteorological conditions</td>
</tr>
<tr>
<td>can use real traffic and environment data</td>
<td>difficult to involve users</td>
</tr>
<tr>
<td>good acceptance of the results</td>
<td></td>
</tr>
<tr>
<td>can evaluate the achievement of the TLS (Target Level of Safety)</td>
<td></td>
</tr>
<tr>
<td>can inform safety case development</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Advantages and Disadvantages of FTS

3.2.3 REAL-TIME SIMULATION (RTS)

3.2.4.1 Real-Time simulation is used in the later stages of the validation of a proposed airspace design and may also be used as a way of demonstrating that both the safety objectives and operational objectives have been met. RTS is often used as a final check and preparatory step towards implementation. This method is used mainly because it provides live feedback from the operational air traffic controllers and for its potential for a high degree of realism.
3.2.4.2 RTS tries to replicate the real working environment of the air traffic controllers as accurately as possible. The main components of a RTS platform are:

- simulator engine
- active controller positions
- pseudo pilots and feeder sectors
- data recording system

3.2.4.3 The simulator engine process the flight plans and the inputs from the pseudo pilots and controllers and provides all the active controller positions with the relevant data in the same way as the operational RDP (Radar Data Processing System) and FDP (Flight Data Processing System) systems. The advantages and disadvantages are listed in Table 4.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>closest simulation method to the live ATC trials which can be used to assess and validate simulation objectives</td>
<td>sterile environment: limited HMI (Human Machine Interface) capabilities, artificial RT, limited radar performance</td>
</tr>
<tr>
<td>gives opportunity to collect high quality quantitative and qualitative data</td>
<td>limited aircraft performance and simplified aircraft behaviour</td>
</tr>
<tr>
<td>feed-back from controllers, based on operational experience (further qualitative assessment)</td>
<td>not realistic aircraft behaviour due to pseudo-pilots without, or with limited, aviation experience</td>
</tr>
<tr>
<td>feed-back from pseudo-pilots (depending on their expertise and simulation conditions)</td>
<td>pseudo-pilots cannot replicate real crews performance</td>
</tr>
<tr>
<td>can indicate and assess human factor related issues (further qualitative and quantitative assessment)</td>
<td>low representation of meteorological conditions</td>
</tr>
<tr>
<td>automatic data collection (for quantitative assessment)</td>
<td>human factor related drawbacks:</td>
</tr>
<tr>
<td>unlimited scope and greater flexibility compared to the live trials (further qualitative assessment)</td>
<td>controller mind-set</td>
</tr>
<tr>
<td>no risk to the live operation</td>
<td>exercise/scenario learning curve</td>
</tr>
<tr>
<td>allow testing of contingency procedures and hazard analysis (qualitative and quantitative assessment)</td>
<td>subjectivity of assessment (mainly with regard to workload)</td>
</tr>
<tr>
<td>simple to assess various alternatives</td>
<td>macho attitude</td>
</tr>
<tr>
<td>on-line feed-back and scenario adaptation (qualitative assessment)</td>
<td>controllers feed-back clouded by historic experience</td>
</tr>
<tr>
<td>can use real traffic and environment data (quantitative input)</td>
<td>cost and time demanding</td>
</tr>
<tr>
<td>good acceptance of the results by the controllers (wide scope qualitative assessment)</td>
<td>potentially resource intensive</td>
</tr>
<tr>
<td>can be part of a safety case</td>
<td>difficulties related to the operational controllers</td>
</tr>
<tr>
<td></td>
<td>availability for simulation</td>
</tr>
<tr>
<td></td>
<td>difficult to involve users directly</td>
</tr>
</tbody>
</table>

Table 4 Advantages and Disadvantages of RTS
3.2.4 LIVE ATC TRIALS

3.2.5.1 Live ATC Trials are probably the least used validation method. Generally, this is because it is perceived as carrying the highest risks despite providing what is probably the highest degree of realism. When used, Live Trials tend to be aimed at assessing a very specific element of the airspace change such as a new SID or STAR or a new Sector design with a very limited traffic sample. The advantages and disadvantages are listed in Table 5.

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>the most accurate validation method</td>
<td>safety implication</td>
</tr>
<tr>
<td>real data are collected</td>
<td>very detailed required</td>
</tr>
<tr>
<td>gathers feedback from all users</td>
<td>limited scope</td>
</tr>
<tr>
<td>good acceptance of the results by the users</td>
<td>limited flexibility</td>
</tr>
</tbody>
</table>

Table 5 Advantages and Disadvantages of Live ATC Trials

3.2.5 FLIGHT SIMULATION

3.2.6.1 Full flight simulators are renowned for their superior realism and accuracy in reproducing all of the operational characteristics of a specific aircraft type. Normal and abnormal situations, including all of the environmental conditions encountered in actual flight, can be precisely simulated. The use of simulators has increased due to advances in technology and the significant cost savings provided by flight simulation training, compared with real flight time. Today’s commercial flight simulators are so sophisticated that pilots proficient on one aircraft type can be completely trained in the simulator for a new type before ever flying the aircraft itself.

3.2.6.2 In addition to pilot training, flight simulation has an invaluable role to play in other aeronautical areas, such as research, accident investigation, aircraft design and development, operational analysis, and other activities such as space flight. Research areas include new concepts, new systems, flying qualities, and human factors. Most aircraft manufacturers use research simulators as an integral part of aircraft design, development and clearance. Major aeronautical projects would now be impractical without the extensive use of flight simulation, on both cost and safety grounds.

3.2.6.3 There are several areas in which a flight simulator can assist in the successful completion of a terminal airspace project. Environmental issues and strong lobby groups are now influencing the positioning of terminal routes (and their associated altitudes) at an increasing number of locations. It can be very difficult, solely by the use of mathematical models and/or fast-time simulations, to convince these groups that their environmental concerns have been addressed fully whereas the realism of the flight simulator can assist the debate considerably.

3.2.6.4 Using representative aircraft (simulators), the various options for airspace can be extensively flown and the data, such as airframe configuration (which affects the noise produced by the aircraft), fuel burn, track miles flown and altitude, recorded. Depending on the requirements of a project and the sophistication of the data gathered, these results can be fed into analysis software for analysis of aircraft noise and emissions.

3.2.6.5 The flight simulator is the closest to reality apart from expensive live flight trials, which are difficult to integrate with on-going operations. The credibility factor is further enhanced if operational line pilots are used to fly the flight simulator.
3.2.6 NOISE MODELLING

3.2.7.1 Political sensitivity to the environmental impact of air transport is a growing concern. The changed placement of any terminal route or the introduction of any new terminal procedure requires an environmental impact assessment in many countries and, very often, the biggest political issue with local councils is aircraft noise.

3.2.7.2 Noise Models use an advanced form of fast-time simulator which is capable of calculating noise contours over a pre-defined area. These ‘noise-modelling’ functionalities are added to typical functionalities (such as a flight trajectory calculation) included in ‘standard’ fast-time simulators.

3.2.7.3 In order to generate the noise contours for each simulated aircraft in addition to the flight trajectories, the noise modeller determines (according to the aircraft model) the estimated speed and engine power setting/thrust. Based on these data and taking into account the terrain contours and other environmental conditions (time of the day, meteorological condition, etc), the simulator calculates the noise distribution and noise level at predetermined check points.

3.2.7.4 The accuracy of the results very much depends upon the realism of the aircraft models used by the simulator and on the model used for calculating noise distribution. Aircraft trajectories can be directly derived from recorded radar data from real-live operations but thrust settings and aircraft configuration has to be modelled. It is difficult to model individual aircraft even when using advanced computational technologies. Movements are allocated to different aircraft ‘types’ and aircraft that are noise ‘significant’ (by virtue of their numbers or noise level) are represented individually by aircraft type, e.g. B747-400. Some ‘types’ are grouped together with those having similar noise characteristics. For each ‘type’, average profiles of height and speed against track distance are calculated from an analysis of radar data. These average profiles are subdivided into appropriate linear segments.

3.2.7.5 Average ground tracks for each route are calculated based on radar data or nominal tracks. Accurate noise exposure estimation requires a realistic simulation of the lateral scatter of flight tracks actually observed in practice. This is done by creating additional tracks which are a number of standard deviations either side of the nominal track. The standard deviations and the proportions of traffic allocated to each route are determined by analysis of the radar data.
3.3 ACTIVITY 11: FINALISATION OF PROCEDURE DESIGN

3.3.1 The procedure design process is only finalised once the airspace concept has been validated. At this point the design documentation is completed, procedure descriptions and draft charts are produced and each procedure is independently checked to ensure that the design criteria have all been followed.

3.4 ACTIVITY 12: VALIDATION OF PROCEDURE DESIGN

3.4.1 The creation of an RNAV or RNP instrument flight procedure or ATS route follows a series of steps from the origination of aeronautical and obstacle data through survey to the final publication of the procedure and subsequent coding of it for use in an airborne navigation database. At each step of this process there should be quality control procedures in place to ensure that the necessary levels of accuracy and integrity are achieved and maintained. The quality control procedures for instrument flight procedure design are detailed in Aircraft Operations, PANS-OPS, Vol II, Doc 8168 and The Quality Assurance Manual for Flight Procedure Design, Doc 9906. They include design reviews by independent designers, desk-top software tools to check procedure coding and flyability, flight simulators and flight trials to check flyability and data comparison exercises to validate coding by the navigation data houses.

3.4.2 Initial flyability checks should consider the use of the procedure by a range of aircraft types and in different weather conditions (wind/temperature, etc.). In some cases it may be necessary to employ more specialized software or full-flight simulators. Flyability tests using actual aircraft can be considered, but these can only show that a particular aircraft can execute the procedure correctly under a particular set of weather conditions. The size and speed of the aircraft that are available for such flights are seldom representative of the performance of a fully loaded Cat D aircraft.

3.4.3 Software tools that use digital terrain data are available to confirm appropriate theoretical navaid coverage. Flight Inspection of navaid coverage is only applicable to DME/DME positioning. It requires specially equipped flight inspection aircraft and is extremely time-
consuming. In many cases it is possible to establish that the coverage is adequate by use of the software analysis tools and the existing flight inspection reports for the individual nav aids.
4.1.1 It is usually during the various validation processes described previously that it becomes evident whether the proposed airspace concept can be implemented. However the final decision whether or not to go ahead with implementation needs to be made at a pre-determined point in the life-cycle of a project.

4.1.2 The decision to go ahead with implementation will be based on certain deciding factors:

- if the ATS route/procedure design meets air traffic and flight operations needs;
- if safety and navigation performance requirements have been satisfied;
- if changes to flight plan processing, automation, AIP publications needed to support the implementation have been completed; and
- if pilot and controller training requirements have been met.

4.1.3 The new Airspace Concept may require changes to the ATC system interfaces and displays to ensure controllers have the necessary information on aircraft capabilities and the appropriate displays to support the new routings. Such changes could include modifications to:

- Air Traffic Flight Data Processor (FDP)
- Air Traffic Radar Data Processor (RDP)
- ATC situation display
- ATC support tools

4.1.4 There may also be a requirement for changes to ANSP methods for issuing NOTAMS, for example to support RAIM prediction or to notify the unavailability of specific procedures in the event of a ground navaid outage.

4.1.5 ATC procedures will also have to be reviewed. The methods by which the PBN air traffic is managed can be very different to existing methods and this will mean that new procedures will have to be developed, trialled and documented. If the PBN implementation involves ATC managing a mixed environment of PBN and non-PBN traffic, this can have a significant impact on the ATC workload and may require major changes to the existing ATC system and procedures. In particular, ATC must be capable of differentiating between capable and non-capable aircraft to ensure that each is accorded the appropriate service and separation.

4.1.6 The introduction of PBN can involve considerable investment in terms of training, education and awareness material for both flight crew and controllers. In many States, training packages and computer based training have been effectively used for some aspects of education and training. ICAO provides additional training material and seminars. Each Navigation Specification in the PBN Manual Volume II, Parts B and C addresses the education and training appropriate for flight crew and controllers.
4.2 ACTIVITY 14: PLANNING FOR IMPLEMENTATION

4.2.1 If all implementation criteria are satisfied, the project team needs to plan for execution of the implementation, not only as regards the local airspace and ANSP, but also in co-operation with any affected parties, which may include ANSPs in an adjacent State.

4.2.2 Implementation can only be successful with comprehensive project planning and a very careful review of all critical factors during the planning stage. Moreover, every assumption must be fully justified. It is only careful planning that makes successful implementation possible. This requirement to organise and plan applies to all the stages throughout the Airspace Concept development, validation and implementation.

4.2.3 Each ANSP should maintain a standard Implementation Planning Process. Figure 23 below shows a simple implementation planning process.

![Implementation Planning Process](image)

Figure 22 Implementation Planning Process

4.2.4 The decision to go ahead with implementation needs to be decided at a particular date in the life-cycle of a project. It should be based on certain deciding factors, known as Implementation Criteria, which may include:

- Have the Safety and Performance Criteria been satisfied;
- Have the required changes been made to the ATM system;
- Have the required changes been made to the ground navigation systems;
- Do the assumptions and conditions upon which the Airspace Concept has been developed still pertain. (are traffic flows as forecast, is the fleet suitably equipped and approved etc);
- Are the critical enablers all in place.

4.2.5 It should be noted that unexpected events that are not directly connected with the airspace concept may affect the go/no-go date.

4.2.6 A ‘No-go’ decision must be respected. It can be very discouraging but it is important not to look for ‘work-arounds’ or ‘quick fixes’. Suggestions that implementation takes place at any cost should be strongly resisted.
4.2.7 The steps to be followed after a ‘No-go’ decision depends upon the reason for the decision. In extreme cases, it may be necessary to cancel the project and return to the initial planning stage. In other cases, it may be appropriate to review the Assumptions, Constraints and Enablers or develop a new set of validation exercises or a carry out a new Safety Assessment.

4.3 ACTIVITY 15: FINAL IMPLEMENTATION

4.5.1 Once the Go decision has been made, the State must establish an effective date taking due account of the data processes and the AIRAC cycle. In order to ensure trouble-free implementation, the airspace design team should remain in close contact with the operational staff. Team members should be available in the operations hall on a 24-hour basis from at least two days before implementation until at least one week after the implementation date. This allows the airspace team to –

- Monitor the implementation process;
- Support the Centre supervisor/Approach Chief or Operational Manager should it become necessary to use redundancy or contingency procedures;
- Provide support and information to operational controllers and pilots;
- Maintain a record of implementation-related difficulties for use in future project planning;

4.4 ACTIVITY 16: FINAL IMPLEMENTATION

4.6.1 After the implementation of the airspace change the system should be monitored to ensure that safety is maintained and to determine whether strategic objectives have been achieved. If after implementation, unforeseen events do occur, the project team should put mitigation measures in place as soon as possible. In exceptional circumstances, this could require the withdrawal of RNAV or RNP operations while specific problems are addressed.

4.6.2 A System Safety Assessment should be conducted after implementation and evidence collected to ensure that the safety of the system is assured.
List of Illustrations

Figure 1 - Airspace Concept and PBN ..6
Figure 2 – Airspace Concept Constituents...7
Figure 3 Airspace Concept Development and Implementation Process ..9
Figure 4 Planning Participants ..11
Figure 5 Planning Triangle ..12
Figure 6 Example Planning Timescale ..12
Figure 7 Reference Scenario ..13
Figure 8 Scenario Comparison ...13
Figure 9 Assumptions ..15
Figure 10 Traffic Assumptions ..16
Figure 11 Traffic Forecasts ...17
Figure 12 Proposed Airspace Concept ..17
Figure 13 Airspace Concept with Structure ..18
Figure 14 Design Iterations ...19
Figure 15 Segregated Routes ..20
Figure 16 Vertical Interaction ..21
Figure 17 Different STAR Methodologies ..22
Figure 18 Point Merge Methodology ..22
Figure 19 Sectorisation ...23
Figure 20 Complexity Trade Off Against Cost ...27
Figure 21 Noise Options ..33
Figure 22 Implementation Planning Process ..36